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The interaction of ions with waves at the fundamental ion-cyclotron frequency in tokamaks is
studied without the assumption of geometrical optics. Instead, two small parameters, €, = p/A
and €, = B /By, are introduced, where p is the Larmor radius, A is the wavelength, and B, and
B are the poloidal and toroidal magnetic fields. The heating at the resonance surface is studied
for a given incoming wave without considering the problem of accessibility. The case ¢, €, is
studied in detail and a boundary layer analysis is performed at the resonance surface. The cold
plasma theory is not valid at the resonance surface and the currents and fields are found by solving
the Vlasov-Maxwell equations. The current is of nonlocal form, so that an integrodifferential
equation is derived and solved numerically. Unlike the case of mirror geometry, in the tokamak
the electric field is not constant across the boundary layer. The profiles of the electric field and
energy flux are presented. It is shown that all the incoming flux is absorbed, and for these
particular values of parameters (€,»€,), there is strong heating at the fundamental resonance. In
addition, the case when ¢, is not much larger than €, is discussed and it is shown that there is not

much heating.

I. INTRODUCTION

Absorption by ions of electromagnetic waves at the ion-
cyclotron frequency range is a potentially useful way to heat
a plasma. The understanding of the heating mechanism as
well as the knowledge of the wave and the energy deposition
profiles may lead to a more efficient heating scheme. Since
the Maxwell equations for a collisionless plasma generally
compose a set of hard-to-solve integrodifferential equations,
one seeks an approximation, usually by expanding the equa-
tions in some small parameter. Three main scale lengths
characterize the ion-wave interaction; those are the equilib-
rium scale length L, typically of the order of the system di-
mensions, the mean wavelength A, and the ion Larmor radi-
us p. Except at resonances the geometrical optics
approximation may be used when A is much less than L.
However, for ion-cyclotron waves, A is approximately ¢/w,,
o, being the ion-plasma frequency, and when o, is not very
large, the wavelength A and the system dimension L are com-
parable. Thus, throughout this article we do not employ a
geometrical optics approximation. Instead, the Larmor radi-
us p is assumed to be much smaller than A, and we expand
the equations in the small parameter €, = p/A. To lowest
order in this parameter, the plasma is described by the cold
plasma theory. The integrodifferential Maxwell equations
are approximated by differential equations, which entails a
considerable simplification of the problem. However, the
cold plasma approximation fails near the ion-cyclotron re-
sonances, where the wave frequency o is close to an integer
multiple of the ion-cyclotron frequency €. There the cold
ion current is unbounded and the equations become singu-

lar.
In a previous article, Weitzner treated the ion-cyclo-

tron resonance in an axisymmetric mirror geometry by em-
ploying a boundary layer analysis near the resonance sur-
face. A nonsingular expression for the ion current was found
in the boundary layer by first solving an approximated Vla-
sov equation and then substituting into the Maxwell equa-
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tions. Here we apply the same method to an axisymmetric
tokamak. In both geometries the current is of nonlocal form,
whose value at each point in the boundary layer depends on
the wave fields across the whole layer. This nonlocal conduc-
tivity may create regions where the energy flows from the
particles to the wave.

Upon analyzing the case of the fundamental ion-cyclo-
tron resonance in a tokamak, we find that in addition to €,,
there is a second small characteristic parameter €,, which is
the ratio of the poloidal to toroidal magnetic fields. In the
axisymmetric tokamak, €, also measures the angle between
the magnetic field and the gradient of the magnetic field
intensity, and represents the degree of parallel stratification.
The relation between €, and €, detemines the form of the
equations in the boundary layer. When ¢, is larger than ¢,,
the presence of parallel stratification makes the form of the
Vlasov equation in the boundary layer similar to that in the
mirror case. The current obtained is nonlocal, as mentioned
earlier.

We study in detail the fundamental ion-cyclotron reso-
nance when ¢, equals €; . The Maxwell equations become in
this case integrodifferential equations. Though not very real-
istic for present day tokamaks, this ordering is interesting for
two reasons. First, it results in strong heating, where to low-
est order all the energy flux of the wave is absorbed in the
resonance layer. Secondly the solution of the equations in
this case can guide us in future problems where a similar
analysis of integrodifferential equations in the boundary lay-
er will be required. We discuss also other cases where the
requirement on the relation between €, and ¢, is relaxed. The
rate of heating is shown to be smaller in these cases.

Problems involving ion-cyclotron resonances have been
treated in the past. Swanson? solved the Vlasov equation to
higher order in €,, a process that yielded a higher-order sys-
tem of equations including mode conversion. Colestock and
Kashuba?® used a variational principle analysis and expanded
the conductivity tensor in k space to higher order in €,, reco-
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vering again higher-order differential equations. These two
analyses were based on the assumption that the expansion in
the small parameter ¢, is still valid near the resonance and
that what is needed is to include higher-order corrections.
However, this assumption is not always correct and the cases
studied in this article require, in fact, a solution of the full
integrodifferential equations.

Let us make two comments before we proceed. First, the
form of the equations depends crucially on the relation
between various parameters of the system. We assumed here
that A and L are comparable. When geometric optics may be
applied outside the boundary layer, a third small parameter,
A /L will appear in the equations. The relation between this
new small parameter and €, and €, may change the form of
the equations near the resonance surface, and a different
analysis may be required. Secondly, the problem we treat
here is the absorption for given fields at the edge of the
boundary layer and the accessibility problem is not treated
here. However, recent numerical studies by Jaeger* employ-
ing cold plasma theory indicate that in some cases wave ener-
gy flux does reach the resonance surface.

In Sec. IT we write the Vlasov-Maxwell equations in
natural coordinates tailored to the axisymmetric tokamak
geometry. In Sec. III a boundary layer analysis is employed
in solving the Vlasov equation near the fundamental ion-
cyclotron resonance surface and a causal nonlocal form is
derived for the current. A detailed analysis of the case of a
relatively large poloidal field is given in Sec. IV, and cases of
smaller poloidal field are discussed in Sec. V.

Il. THE VLASOV-MAXWELL EQUATIONS IN NATURAL
COORDINATES

The ion dynamics is determined by solving the linear-
ized Vlasov equation,

af af e (

L o+ EvxBe L~ -2 E+lx—B-)-§5.
v m

av

c
(1)

The tokamak equilibrium is axisymmetric. The equilibrium

magnetic field B,(7,z) is given as

B,(r,2) =B0[9cosa+ (PsinfB + Z2cosB)sina], 2)

where B, @, and B are functions of 7 and z, and the equilibri-

um ion distribution function Fj is

Fy=Fy(v},vi,rz2). (3)
The angle 8 varies between zero and 27, while the angle a is
assumed to be small.

We now make successive changes of variables similar to
those used for the mirror geometry by Weitzner' with modi-
fication to the tokamak geometry. Since this part is parallel
to that of the earlier work, it is presented here in somewhat
condensed form. We introduce three orthogonal unit vec-
tors:

f/'l =PFcos B — 2sin B,

f/2=9sina— (Psin B + 2 cos B)cos a, 4

f’3 =8cosa+ (?sin B + 2 cos B) sin a.

The velocity vector v is characterized by v, , v, and the gyro-
phase angle ¢, where
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V=1 V3+vl(cos¢f/,+ sin¢f/2). (5)
Using complex unit vectors f’i = (f/, F iAVZ) /2, we define
any vector Aas A=AV, +4 V_+4, V,. We take a
Laplace transform in time, corresponding to time depen-
dence exp(iwt), Im @ <0, and in the azimuthal angle with
mode number M. The perturbed distribution function
Sir,v,t) is

f(r,v,t) =f(r,z,9,u" N 1¢’t)

i Ja (rz,v),v, Yexpling)

n= —co

Xexp(iot + iM6), (6)

where 7 is the harmonic number in the gyrophase angle.

We make now a final transformation in real space. We
introduce the coordinate £(r,z) that parametrizes the sur-
faces in real space on which the cyclotron resonance may
occur,

£(rz) = eBy(r,z)/ (mew). (7)

The second spatial coordinate % (7,z) is chosen to be the co-
ordinate of the orthogonal trajectories to the surface
&(r,z) = const, such that V{-Vy = 0. We take

n,= —prz)§,,

(8)
1. =p(r2)§,,
and the function u (r,z) is
dé_,(B() rr + B(lzz ))
(rz) =ex ( — J-g . : . 9
M p ., VB, 9

We wish to represent spatial derivatives in terms of the new
coordinates. For that purpose we define

K'= (ﬁp-V)g =¢&,sinf + £, cos 3,
(10)

= (B,XVOV)E =&, cosB + &, sinf,

where B is a unit vector in the direction of the poloidal
magnetlc field, B = Fsin B + 2 cos B. The derivatives in
the (r,z) plane in the direction of the poloidal magnetic field
and perpendicular to it are

A . d a d a
B V=5 — — =K — Y —
, 1nﬂar+cosBaz Kag uva
(11)
, d , d
B, X0V = —cos f— +sin f— = V'—— + ux'—

Similarly to Ref. 1 we normalize the quantities v = v, u,
Fy(v)dv = nyGy(u)du, and evy f(r,v)dv = g(r,u)du. The
current in these units is

J= Jug(r,u)du.

The wavelength of waves in an homogeneous plasma at the
ion-cyclotron frequency range is ¢/, . In the present work,
we assume that this wavelength is comparable to the dimen-
sions of the system. Thus the effective scalelength of waves
and equilibrium quantities is

A=c/w,

(12)
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and the dimensional space variable r’ is

r=Ar. (13)
We assume the quantity €, to be our small parameter
6=vg0,/(cw). (14)

The quantity €, is the ratio of the effective ion Larmor radius
vy /o to the mean wavelength c/w,, . This small quantity will
be used for the expansion instead of the geometrical optics
small parameter. We rescale the space gradients x’ and v/,

K =k/A, Vv =v/A, (15)

so that « and v are of order 1. The parallel and perpendicular
derivatives are

u .
ng—i[sin a(Vl,B + smﬁ) + cos aV”a]R +u [sin av, +

r

0F IE—uz—l—[vl —cosaV,Bi(n+1) + l[( —cosaV, +

+

u { cos® a cos B R iuy cos a sin B

2 r ur

r

: 2
+ i[(w —sin aV”a)R +i(n+ l)ﬂ—( _ScosBeos a +V,B sin? a)”,
r

u

n

r

u
+—4|L Vla+sinacosa(V“/3 + cos B
r

The current J . is

0 — o

We introduce here a second small parameter €, that
characterizes the system

(18)

sin a = @e,, (19)

where @ is of order 1. This small parameter is of the order of
the ratio of the magnitudes of the poloidal and toroidal mag-
netic fields, and its value varies according to the location of
the resonance surface relative to the tokamak axis. The rela-
tion between €, and ¢, is crucial in determining the forms of
the Vlasov—Maxwell equations and thus is important to the
character of the interaction.

As can be seen from the last form of the Vlasov equation,
far from the ion-cyclotron resonances, as long as 1 — n& #0,
the terms proportional to €, can be neglected. Then the cold
plasma theory is valid to lowest order. The perturbed cur-
rents thus obtained from the approximated solution of the
Vlasov equation are the same as those obtained from the cold
plasma theory. However, near the ion-cyclotron resonances,
when for some integer n, 1 — n£ is nearly zero, thermal ef-
fects must be included. The solution of the Vlasov equation is
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iMsina )
r

)i(ni2)¥(—

U 1( 49 J
Vl = Bp x0-V = T(Va—g + ﬂK%).

In the new variables, the Vlasov equation for g,,, the nth
Fourier component of the normalized distribution function

gis
2 s
i(1—né)g, +€1' E 08,4/

j=—=2
= — (0;/0)[8,E Gy, + (i/2)(E_8; ' — E85,)
X Gy, — (v4/2)(B_8;"' + B, 8" )RG,], (16)

where we employ the notation G, = dGy/du, and Go.,
=0dG,/du), and R =u, (d/duy) —u,(d/du,). The op-
erators O/, are as follows:

in cosa —%isinacos a(V"ﬁ + COSB) +£;—Vla],
r

. u M
+i(n+ l)V”Bcos2 a]] + El—smza cosfB(n+1)
r

. ny
(n+ 1) +sin® aV,BR + —gin aVja(n £ 1)
ul

(17)

" L .
0 +2 :Tl[[sjn av.p— (§1_na_51£1_B_+ cosaV”a)]R i‘i( _ sinacosacosf +V,a — sin a cos aV”B)R ]

4

SnasinB ;4 2) + (sina¥,8 — cosa¥a)(n + 2)>]'

‘modified, and as a result the forms of the currents and the
electric fields are changed.

We turn now to Maxwell’s equations. In the normalized
units they become

V' X (V'XE) ~ (0*/0})E = ( — w/w})d 71, (20)
B = i(w,/0)V'XE, (21)

where J 1, the total current, is the sum of the ion current J
and the electron current o, *E:

J;=J+0,E. (22)

We employ the approximation commonly used for waves at
the ion-cyclotron frequency range, that is

E, =0. (23)

This approximation is justified by the fact that the parallel
electron conductivity o is proportional to the ion to elec-
tron mass ratio and E | must vanish in order to balance this
term.’

For the high-density plasma in a tokamak and for waves
at the ion-cyclotron frequency wz/a)f, is small. Thus the per-
pendicular components of the first of the scaled Maxwell
equations [ Eq. (20)] are approximated to be

V' X (V'XE), = ( — io/o?)J. (24)
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Far from the ion-cyclotron resonances the various terms
in the last equation are of order 1 in the wave electric field
amplitude. Near a resonance surface the current may grow
as well as derivatives of the fields relative to §. One may
recall that sin « is much smaller than 1, even though we do

not yet specify its magnitude. We are interested in an ap-

sin # i_ i)(&'E JE, )
r T ald ar dz

VX (VXE)-7, =( %

Vx(VxE)-f"z: — cosa[(— + v— + ux—
r /3
+-l£(x%— ,uvg%)(E2 sin )
. [ iM( aE
+ sina@{ — —{ Kk cos
r ¢9§

We now turn to study the Vlasov—Maxwell equations
near the fundamental ion-cyclotron surface.

li. ANONLOCAL CURRENT

In order to solve the equations near the resonance sur-
face we apply a boundary layer analysis. The equations are
expanded inside the boundary layer and their solutions are
matched to the outer cold plasma soutions. First we solve the
Vlasov equation in the boundary layer, use this solution to
determine the currents and then solve Maxwell’s equations
with those currents.

A basic assumption in the analysis is that near the reso-
nance surface the perturbed quantities have fast variations in
the direction perpendicular to the surface, while they retain
the same space dependence parallel to it. The fundamental
resonance occurs when 1 — £ is small. We thus rescale £ and
introduce a boundary layer variable £ such that

and
219 (7)
9 € OF

The variable £ is of order 1 in the boundary layer and ¢, is the
small width of the boundary layer. Examining the Vlasov
equation we notice that if €, €, the equation for g, in the
boundary layer is approximately

&)2

where the width of the boundary layer ¢, is related to €, and

€, through
= (&) 29)

A similar form for the Vlasov equation was obtained for an
axisymmetric mirror geometry.! This form originated from
the presence of parallel stratification, which was comparable
to the perpendicular stratification. In the tokamak there is
only small parallel stratification. Nevertheless, as long as the

—iestg, + @x&u,,%’zl = - (28)
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cos B ad J )(8E

e t)-[eonf

proximate solution of the Vlasov—Maxwell equations near
the resonance surfaces, which will give us the currents and
fields to lowest order. For that purpose we write the compo-
nents of V' X V' XE, omit the terms that are proportional to
sin a, and do not involve derivatives and thus are obviously
of high order in the wave field amplitude,

2 .
%_El - l—r‘n{( _§§— + ,ux——) (E;sina),
JE, M?
il _Cr2 os aE,

1 .
+ —(——(K2 + v‘)) 3(2' ] (E, sin a)].

35” 9 25)

garallel stratification is not too small, or explicitly as long as
€, is larger than €,, we obtain the above approximated form
(28) for the Vlasov equation.

The unique causal solution of Eq. (28) is’

0)2 G, u ¢
81 = _( L )(_—Ovi J dx
20)63 u" Ka ~ oo sgn{i «@)

XE, (x,p)exp[ (&% — x7)/ - 2iuyk&].

(30)

By integration in the velocity space, we obtain the resonance
current,

2
J+=(;)€)f dulf duy 277'ul( Go )
3 Uy k@

z 2
x f dxE., (x7 )exp(__g — )
~ o sl — 2iu ka
(31)

The current is of nonlocal form. The current at each point is
obtained by an integration across the whole boundary layer.
The nonlocal conductivity causes some peculiarities in the
interaction of waves and particles and considerably compli-
cates the analysis of the problem and its solution.

The resonant current is of order 1/¢,, and we substitute
it into the Maxwell equations. The terms of order 1/€ must
be zero so that

§Z(VE2 «kE;) =0. (32)
Since we expect the fields at the edge of the boundary layer to
be of order 1 in the fields, we look for a solution that does not
have linear dependence in &, since such dependence results in
field amplitude of order 1/€; at the edge. Thus, excluding

linear dependence, we obtain to lowest order
vE® —kE® =a(n),

where a(7) is a constant that does not depend on E
We turn now to higher-order terms in 1/¢€,, which will

balance the resonant current. In order to identify those terms
we have to specify the relation between ¢, and ¢,. We study

(33)
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two cases. First we let €, be much smaller than ¢,, namely
€, = & . This ordering may not fit present day experiments,
but it is interesting since explicit solution of the equations in
this case shows a strong absorption of the waves. Secondly,
we examine the case where ¢, is larger than € but smaller
than €,, and show that the absorption is smaller and of high-
er order in the wave fields. Finally, the case when ¢, is com-
parable to €, or smaller than ¢, is discussed.

IV. RELATIVELY LARGER POLOIDAL FIELD

The largest terms in the Maxwell equations that can
balance the resonant current are

J%E, &
(v, + k) VX v><E)=——(K2 + V) ===
1 2 ( a§2 €§
= —“;—(le +«&J3).
wP
This balancing requires the relation €2 = ¢; and with the
previously used equality €; = €,€, we have

(34)

(35)

Using (31) we obtain the following integrodifferential equa-
tion for £, :

2
(,r(7z):*“’d_§’_52+ - J f 2, du, 2L

3 2 _
X f dxE, (x,n)exp(—é——.—xz—_ )
— oo sgn(uKa) — 21u”Ka
(36)

For mirror geometry,' the electric field is constant to lowest
order in the boundary layer. However the current has fast
oscillations because of the strong £ dependence of the nonlo-
cal conductivity. In the tokamak the electric field itself has
fast oscillations to lowest order and in order to find its form,
we have to solve this far from the trivial integrodifferential
equation. Since the resonant current is of order 1/€;, and the
width of the boundary layer is of order €, the rate of heating
JE is of order | in the wave field amplitude.

Assuming an equilibrium Maxwellian distribution func-
tion, and defining

G Ef 2mu, du, G, = (-L—)e —ui2
o 27

€, =6.

k =|«x&|, B=4E/k? p=322/k3, (37)
EB)Y)=E (&),
Eq. (36) becomes
dZE [J‘ d (ﬂ Brz
8’ E(B')F|——F—
dg* ZJ—p p )
2 __ 2
+j dB'E(ﬂ’)F‘(-ﬂ—p—B—)]Ej(ﬁ), (38)
B
where
— “dre”" i/t
F(y)_J; e (39)

We may obtain the asymptotic form of j(8) for large 8> 0
by expressing it as an integral on the whole real axis plus an
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integral from 8 to infinity. The integral on the whole real
axis can be shown, by an application of the steepest descent
method, to decay faster than any power of 1/8. The second
integral can be shown, through integration by parts, to be of
the form — E /4f. This is also true for large |3 |, 8 <O0.
Thus asymptotically Eq. (38) is

d’E E _
= 40
4 32 + B (40)
Two independent solutions of this equation are
W, (B) =B""HP B, j=12, (41)

where H {? are the Hankel functions. In the high-field side,
when £ > 0, the two solutions are oscillatory. We expect the
general solution in this region to be asymptotically of the
form

E=W,(B) + RW,(B). (42)

In the low-field side, for 8 <0, one of the solutions, W, (53),
is exponentially decaying, while the second, W,(83), is ex-
ponentially growing. Not expecting an exponentially grow-
ing solution, we look in this region for an asymptotic solu-
tion of the form

E=TWp). (43)

The values of the quantities R and T are determined by
matching these asymptotic solutions on both sides of the
boundary layer to the solution of the integrodifferential
equation. The value of R determines the rate of absorption as
can be shown by use of the Poynting theorem. The Poynting
theorem says that to lowest order the rate of absorption is

f dERe(J* E,) = (R e(E*XB)- lzgl)

Here [ ] denotes ajump of the quantity in the brackets across
the boundary layer. In order to know the rate of absorption
there is no need to perform the integration of J* E | across
the boundary layer. It is sufficient to find the asymptotic
values of the Poynting vector on both sides of the layer and to
evaluate the jump in this quantity. The relations between E
and B [{Eq. (21)] and between E, and E_ allow us to write
the value of the Poynting vector flux in the normalized units

Ve __% Im(E* 5E+).

>Tvel ~ 7val "o
Using the Wronskian relations between the Hankel func-
tions, we obtain

(45)

JE |
I E*~—+)——-—1—R2, oo,
m( o8 7r( R, e
(46)
Im(E";aﬂ‘*)——-O, f— — =.

We retained only that part of the flux that is not oscillatory.
One can see that R is the reflection coefficient and |R |* ex-
presses the fraction of the wave energy that is reflected from
the resonance surface. No wave propagates in the low-field
side. The calculation of the absorption rate is thus reduced to
finding R since there is no transmission. The rate of absorp-
tion is
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P= (2/7VQ|)(1 — R ). (47)

In order to solve Eq. (38) we treat it as a differential
equation with an inhomogeneous part j(8). We write an
equivalent differential equation, whose inhomogeneous part
vanishes faster than j(8) at infinity. The equivalent equation
is

d’E  E E

B +— B =jB) + B
However, a Green’s function built from the homogeneous
solutions given above has singular behavior near the origin.
Thus we write the equation in a new form again,

(48)

dB’ +f(ﬁ) =j(B) +AAB) =h(B), (49)
where
fB)Y=(E/4B)[1 + HB—By) —H(B + B,)] (50)

and H(x) is the Heaviside step function. The Green’s func-
tion of this equation is not singular near the origin. We are
looking for a solution that does not grow exponentially at
negative infinity. The general solution of this form is

E=W1<ﬁ)+f° dB’ GBAKB"), (51)
where the Green’s function G is
6.5 B) /14BN, B<B’,
G ! =[ 52
BE) =\ 1o, Bre B 1/1aB) ), B8, P

and g, and g, are solutions of the homogeneous equation

d2E /dB? + f(B) = 0. These solutions are
W.(ﬁ), B< — By

g B =4aB+b, 1Bl <Bo i=12, (53)
W (B) +d,W,(B), B>Bo

The constants g;, b;, ¢;, and d; are found by requiring con-
tinuity of the functions g; and their first derivatives at

B= + B, The Wronskian ¢(B) is constant, ¢(B)
= b,a, — b,a,. The asymptotic solutions are
E = w,(B) + [czwl(ﬂ) +d2W2(ﬂ)]
x|~ a8 L hp, poc,
~ 7 (54)

E=W,/(B + W (B

xfw dB'gZ—f—'lhwv, B — w,

which correspond to an exponentially decaying wave in the
low-field side, and to incoming and reflected waves in the
high-field side. The relative reflection coefficient is

R =;im {dz[E(B) — W(B)1/1[g.(B) + c,E(B)

— WA} (55)

Equation (51) is an integral equation. As such, it is more
convenient to write it in the following form,

EB) =W,(8) + f " B BBk, BB")

o a8 (Ejf” D68,

(56)
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The first kernel is

ko(BB™) -(

1 f" . .
+ dap' G(B.B")F,(y)
(2\/—1;p) —w thd

) B’ GBBF, (), (5T)

) f dB’ G(BB")Fr (»)

1
(Z\F 7p
where Fr and F; are, respectively, the real and imaginary
parts of the function F defined above (39), and

y=B*=-B"*/p, (58)
sgn(B")Bys 1B ”l > Bos
- 59
Bl [ n, !ﬁ”,<ﬁ0' ( )
The second kernel is
ki(BB")
.y
L "ap 6B, B"< B
N
=40, IB"| <Bo (60)
1
— dﬂ GBB")F\(¥), B">By
227 I8 °

where y denotes the same as above and the function F, is

F, ()= f dte~ " cos (Z)
0 t

Equation (56) is approximated as a set of algebraic
equations. We divide the interval [ — L /2, L /2] into N
equal subintervals, each of length AS =: L /N, and denote
B;+1 =B; + AB, where B, = — L. We solve the N + 1
coupled algebraic equations

N+1
EB) =W(B,) +88 S EB,)ko(B,Bn)

m=1

(61)

l y (E(Bm+1) E(ﬂm—l))
A - k (Bnﬂm)’
2 = Bm+l Bm -1 '
n=1L.,N+1, (62)

for which the kernels are calculated at (.V + 1)? points. The
kernels at each point are found by a double integration.
Their calculation imposes a computing time problem when
the number of subintervals V is relatively large. In order to
save computing time we calculate the values of the functions
F and F, for a large number of points and store them. Then
during the calculation of the kernel we perform only one
integration. The value of the function of ¥ or F, is found by
using the vector of stored numbers and a spline method,
instead of performing an integration each time.

The values of the function F(y) are found using the fact
that this function is a solution of the third-order differential
equation,

d’F d*F

y 2 +2— 0 2F=0.
Using numerical integrations we find the values of F and its
first and second derivatives at y = /. Then, with these initial

(63)
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values, we find the values of F on the real axis by employing a
standard ODE solver. This method is not accurate for large
values of the argument, since the ODE solver picks the ex-
ponentially growing solution of Eq. (63), while the function
F is a decaying solution of this equation. Thus, for large
values of the argument we integrate Eq. (63) from infinity,
choosing appropriate initial values.

The function F; (y) can be easily calculated by using the
equality

dF, _

& Im(F).

The electric field profile of the wave was found for sever-
al values of the parameter p by solving Eq. (51) and the
reflection coefficient R was calculated using Eq. (55). In all
the cases, R was found to be zero, which means that to lowest
order, all the incoming energy flux is absorbed. The full solu-
tion of the Maxwell-Vlasov equations for the warm plasma
thus justifies the cold plasma calculation of the heating. The
cold plasma equation (40) has a solution of total absorption
for waves coming from the high-field side. An analytic proof
that the reflection coefficient is zero indeed is given else-
where.® It is interesting to note that for this specific case,
where €, equals €5, there is a strong heating mechanism in
the fundamental resonance for a one-species plasma. The

(64)

T T T < T T
I/ A (a)
1.00 |- p =50 / ~
1
i
! A
)
50+ k B
fl A\
i W
I
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FIG. 1. The real part of the electric field (solid line) versus the real part of
H{V(B) (dotted line) near the resonance. (a) p = 50, (b) p = 20 000.
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rate of heating is proportional to the plasma density, the
wave energy density and the reciprocity of the magnetic field
gradient magnitude at the resonance surface [Eq. (47)].
This heating has not been observed experimentally probably
because in present day tokamaks there is a different relation
between €, and ¢,.

In addition to the total amount of absorption, the energy
deposition profile is also of major importance. We present
the numerical values of the electric field, the energy flux and
the absorption rate across the boundary layer when the pa-
rameter p takes the values 50 and 2 X 10.* The quantities are
plotted versus the normalized coordinate 8. The relation
between 3 and £ may be written in the form

E—1=PB(c/wp,)(BVE /2)2, (65)

where the gradient is in cgs units. Note that this relation does
not depend on the ion temperature. Thus, increasing the val-
ue of p by increasing the temperature only, means keeping
constant the ratio of 1 — £ and f3. The figures in this case
show that influence of the temperature on the interaction. In
Figs. 1 and 2 the real and imaginary parts of the electric field
are compared with the cold plasma electric field, the Hankel
function. The deviations of the electric field profiles from the
cold plasma fields grow as p increases. Figure 3 shows the
energy flux magnitude. For the cold plasma case the Poynt-
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1 1 1 1 | I L
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B
FIG. 2. The imaginary part of the electric field (solid line) versus the imagi-
nary part of H {"(8) (dotted line). (a) p = 50, (b) p = 20 000.
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FIG. 3. The energy flux near the resonance. (a) p = 50, (b) p = 20 000.

ing vector magnitude is a step function, a finite constant flux
for positive B and zero flux for negative 5. In the warm
plasma case the flux is continuous and changes over a
broader interval as p gets larger. The same feature is ob-
served in Fig. 4, where the absorption rate, found by taking
the derivative of the energy flux, is plotted. In both Figs. 3
and 4 we notice that while broadening with increasing p, the
regime where absorption occurs also moves to the high-field
side region. For large values of p most of the absorption takes
place before the wave reaches the resonance layer. We also
notice that there are regimes where the particles emit radi-
ation rather than absorb it. This phenomena is related to the
nonlocal character of the current. On the whole, the particles
absorb energy from the wave and do not emit energy, as
expected.

To sum up this case, there is a strong heating mechanism
at the fundamental cyclotron frequency, whose origin is the
finite parallel stratification.

V.SMALLER POLOIDAL FIELD

First we study the case when ¢, is still larger than ¢, but
€, is larger than €. In this case the solution of the Vlasov

1627 Phys. Fluids, Vol. 29, No. 5, May 1986

I -
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B

FIG. 4. The rate of absorption near the resonance. (a) p =750, (b)
p = 20 000.

equation in the boundary layer is the same as before [Eq.
(30)]. The form of the Maxwell equations, however, is dif-
ferent. In order to balance J, in the Maxwell equations, the
electric field E, has to be small in the boundary layer. To
lowest order E | becomes

E.Em =&EPED, (66)
and the current J, is of order 1. Using ( 33) we find that £ _
is constant to lowest order,

E_(En) =EQ) +&E V().

Since the currents are at most of order 1, £ {’ and E {V obey

the same relation as E {* and E |\, so that

VEV cos @ — kEV =a®(y) + b ().

(67)

(68)

Here we allow linear dependence, since such dependence of
the first-order field does not cause divergence of the fields at

the edges of the boundary layer. To lowest order the term
VX (VXE) (v cos aV, +kl>'2) (69)

does not contain derivatives with respect to £ and is thus
constant. The current J_ is also constant since E © is con-
stant. The Maxwell equations thus yield
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G,
J =f du f du, 2mu
M t ! y (uy kx)

3 . _
Xf_ < s dxE' ’(x,n)exp( £ =i k&) = const.
(70)
An electric field that obeys this equation is
EY =A(E. (71)
The total heating is
r dERe(EV"T,) ocr dEE=0. 712)

To the order of €2 ( = ¢,¢,) the heating is zero, so that non-
zero heating may be found only at higher order. One may
note that the net zero absorption here is composed of two
equal parts of both absorption and emission. Again the
source of emission is the nonlocal form of the current.

To the next order, the fields and distribution function
are

8 =8 + (e./€;)g",
E, =6EP +€E?D,
E_=EPm+6EL +6EP.

Substituting g, and E, into the Vlasov equation, we have

0)2 GOu z
g = _(_P)(__' )f dx E® (x)
' 20 /\ kuy JJ - « sgnckup N

zz_xz) (05" + 018,
— 2ikuy, ku”

1 Ez _x?
xf dx ex (——— ) (74)
— 0 sgn(ku") p —_ 2lku”

Collecting terms of order €,/¢; in Maxwell’s equations, we
have

VX VXE: (vcosaV, + kV,) = const = v cos aJ; + kJ,.

(75)

Expressing J, via the integral of g{"’ and substituting it into

the last equation, we derive the following integral equation
forE,:

G, $
f dulf du) 2mu, f dx
ku" — oo sgn(kuy)

(73)

X exp(

E—x z
Em(x,n)exp(————) =C+ F(&), (76)
— 2ik u,
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where
- 2mu,du,d
R =52 | [0t + 0%,
2("1? u
3 z2 2
XJ dx exp(—g—;x——). (77
— oo sgn(ku) — ZIku”

The heating resulting from products of E*_J__is of order €,
and the total heating is of order €,¢; after multiplying by the
width of the boundary layer, namely of order €; %€}/

We do not solve the equation for E, exphcltly in this
case, but estimate the order of the heating rate and find it to
be small. The heating is smaller than in the case of higher
poloidal field since the parallel stratification is small.

Next we discuss the case of even smaller poloidal mag-
netic field, when €,<¢,. In this case the parallel stratification
is too small to provide the heating mechanism described in
the previous sections. The equations for the various Fourier
components g, are coupled and a simple approximate solu-
tion is not available. However, the decrease in the absorption
rate with the decrease of the poloidal field found when €, > €,
indicates that the heating is small. An analysis of electron-
cyclotron resonance heating for perpendicular stratified
plasma® showed that for such geometry, E j is the source of
heating. This parallel component of the wave electric field is
zero in the ICRH case. This may be an additional indication
that there is no heating when the poloidal magnetic field is
small.

Usually in tokamaks the poloidal field is small, which
explains why heating is not observed experimentally at the
fundamental resonance.
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